# Modeling categorical variables 2: Ordinal and multinomial models

Aleš Vomáčka 2023

#### Lesson Goals

- Learn how to work with ordinal binomial models
- Learn how to work with multinomial binomial models

# Ordinal regression



### Ordinal variables

Models for ordinal data

- Likert items
- Coarsed frequencies

Extension of binary binomial models, most of what you've learned applies. Sometimes called cumulative link models.

#### Subjective General health

#### How is your health in general? Would you say it is ...

- 1. Very good
- 2. Good
- 3. Fair
- 4. Bad
- 5. Very bad



#### **General Subjective Health**

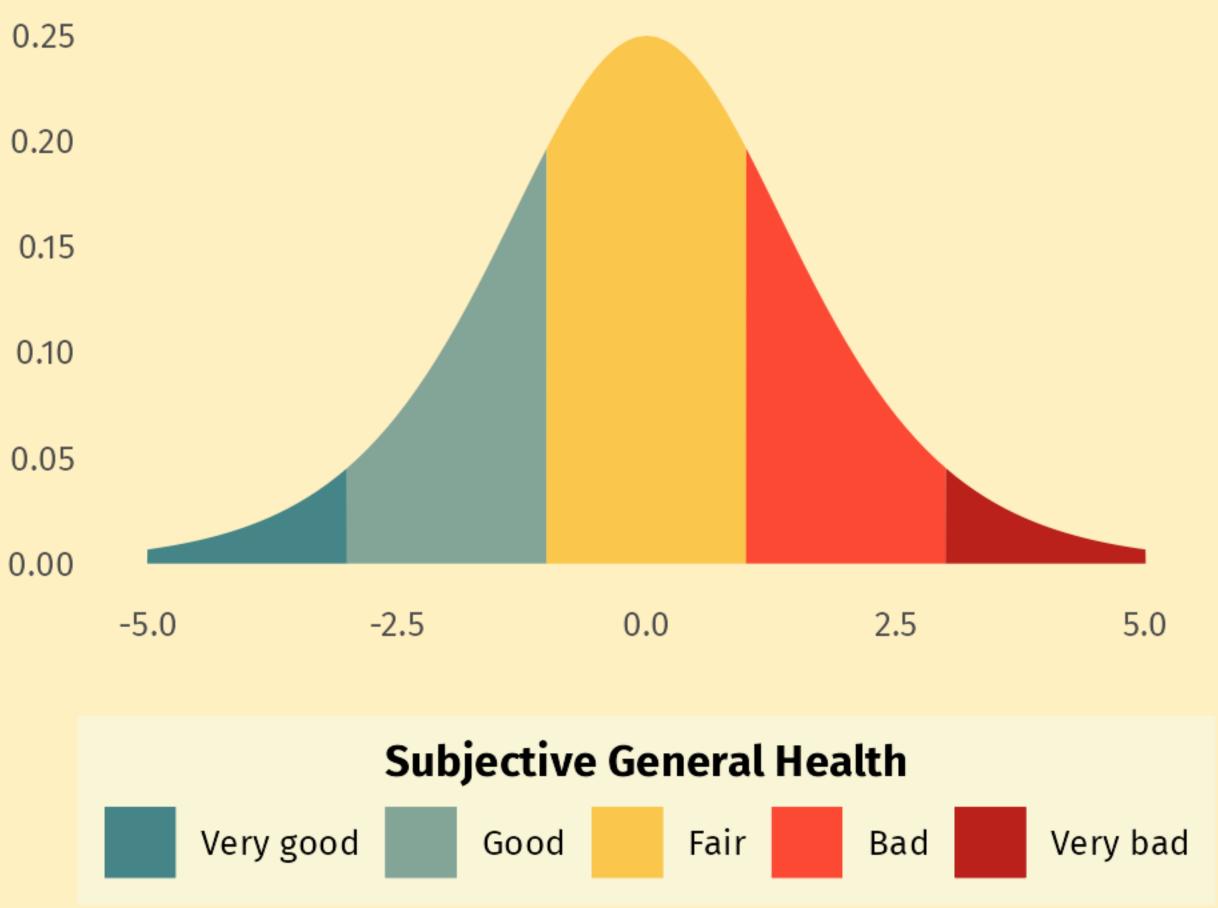


#### **Ordinal model**

#### $logit(x < = X) \sim Binomial(X\beta)$

Sequentially predicting the probability (or logit) of being in a category lower than x.

(Where x is are the response categories).



## Predicting health by age and education

| Predictor                                | Coefficient             |                       |
|------------------------------------------|-------------------------|-----------------------|
| Age                                      | 0.062                   |                       |
| Education: Elementary                    | _                       |                       |
| Education: High school (without diploma) | -0.248                  |                       |
| Education: High school (with diploma)    | -0.291                  |                       |
| Education: University                    | -0.532                  |                       |
|                                          |                         |                       |
| Intercepts:                              |                         |                       |
| Very good Good                           | 0.610 High value of     | on the late           |
| Good Fair                                | 2.831 scale means bad s | s you are ir<br>shape |
| Fair Bad                                 | 4.962                   |                       |
| Bad Very Bad                             | 7.340                   |                       |

Being older increases the value of the latent scale





## Interpreting ordinal regression

Same problems as with binary models:

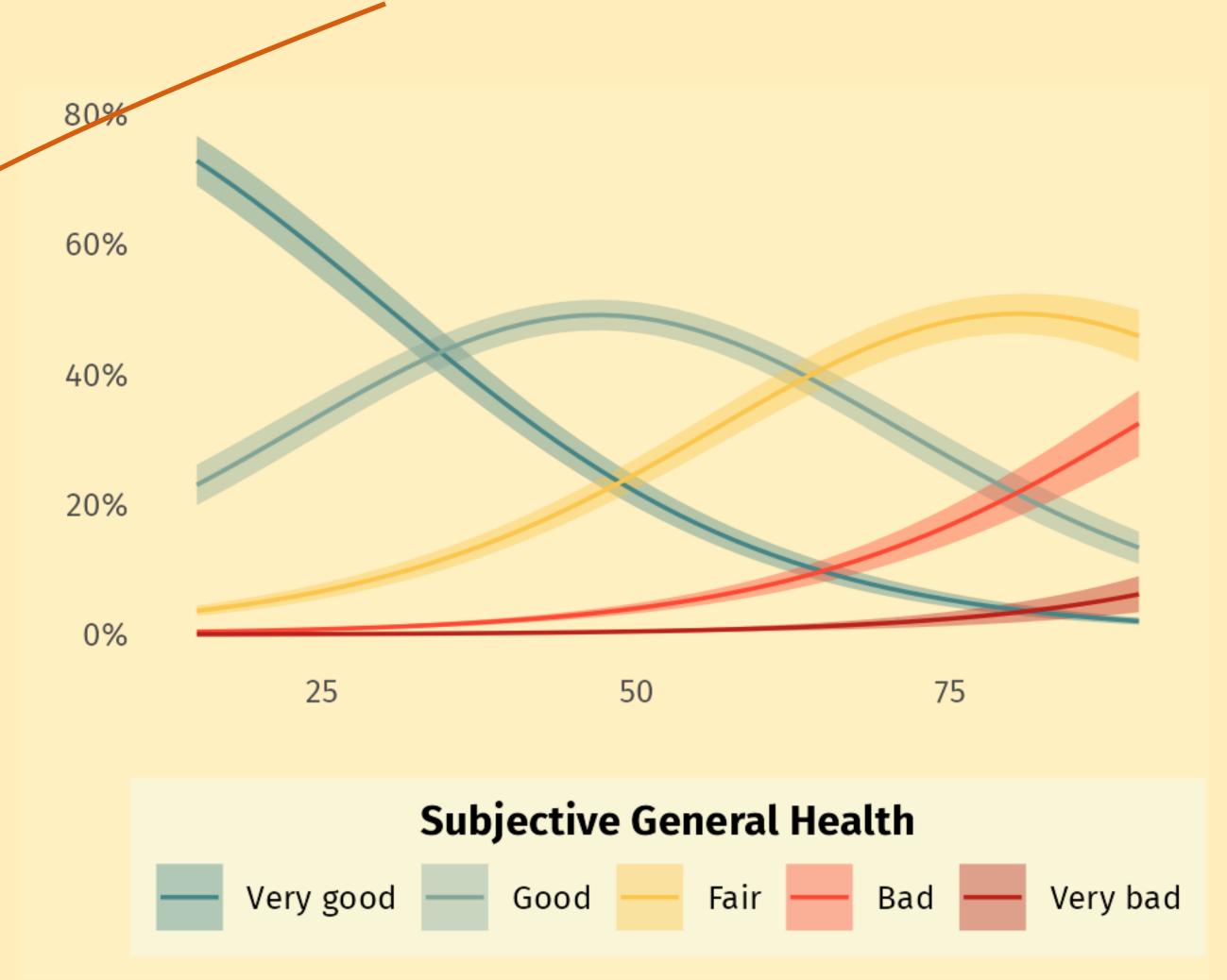
- Logits are an unintuitive scale
- Logits are non-collapsible

Same solution - marginal effects on probability scale

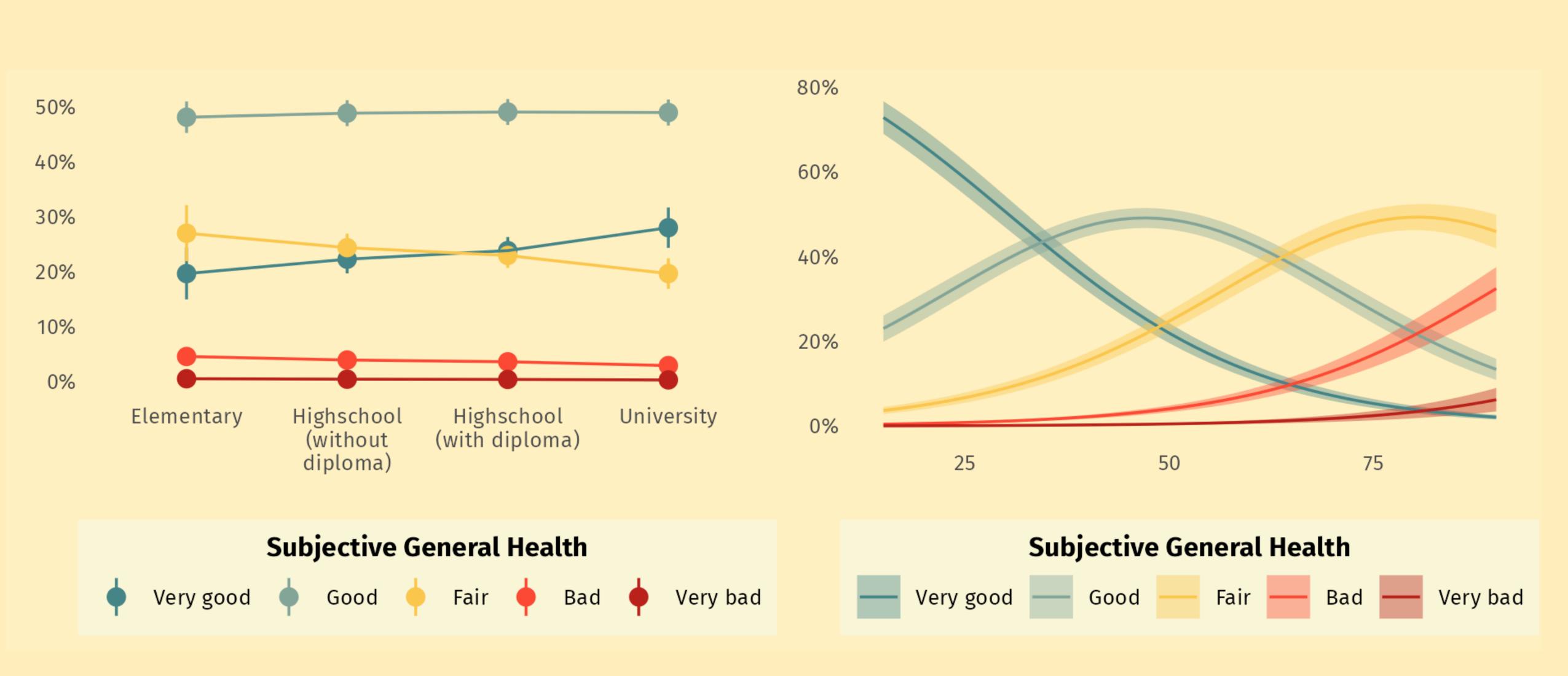
### Marginal effects for Age

| Category  | Marginal effect |
|-----------|-----------------|
| Very good | 0.010633        |
| Good      | -0.000430       |
| Fair      | 0.007292        |
| Bad       | 0.003254        |
| Very bad  | 0.000517        |

#### For each year of age, the probability of being in very good health drops by 1.06 percentage point.



### Marginal effects for Education



Questions?

InteRmezzo!

# Ordinal regression assumptions

## **Proportional Odds Assumptions**

Logistic ordinal regression assumes the effect of predictors is the same for all adjacent categories, the so-called proportional odds assumption.

Example:

We assume that the effect of age on moving from "Very good health" to "good health" is the same as on moving from "good health" to "fair health".

## **Proportional odds assumptions**

| Predictor                                | Coefficient |
|------------------------------------------|-------------|
| Age                                      | 0.062       |
| Education: Elementary                    | _           |
| Education: High school (without diploma) | -0.248      |
| Education: High school (with diploma)    | -0.291      |
| Education: University                    | -0.532      |
|                                          |             |
| Intercepts:                              |             |
| Very good Good                           | 0.610       |
| Good Fair                                | 2.831       |
| Fair Bad                                 | 4.962       |
| Bad Very Bad                             | 7.340       |

## **Checking proportional odds assumption**

age

Plot average value of predictor against the dependent variable.

The full line should follow the dotted line.

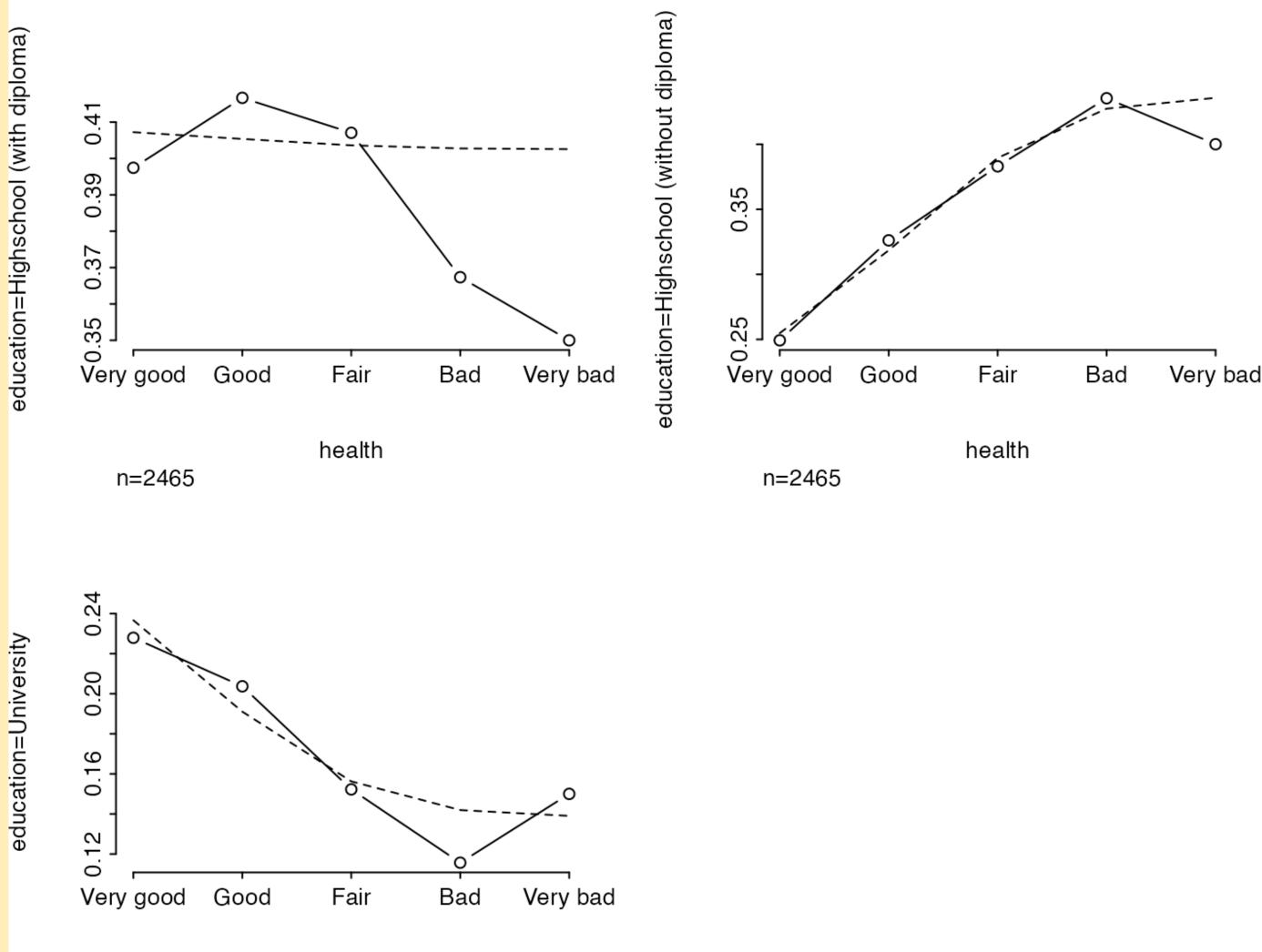
#### Looks good for age!



## Checking proportional odds assumption

Plot average value of predictor against the dependent variable.

The full line should follow the dotted line.



health

#### Less good for education



## Fixing proportional odds

If the proportional odds assumption is broken for some predictor, point estimates will be biased.

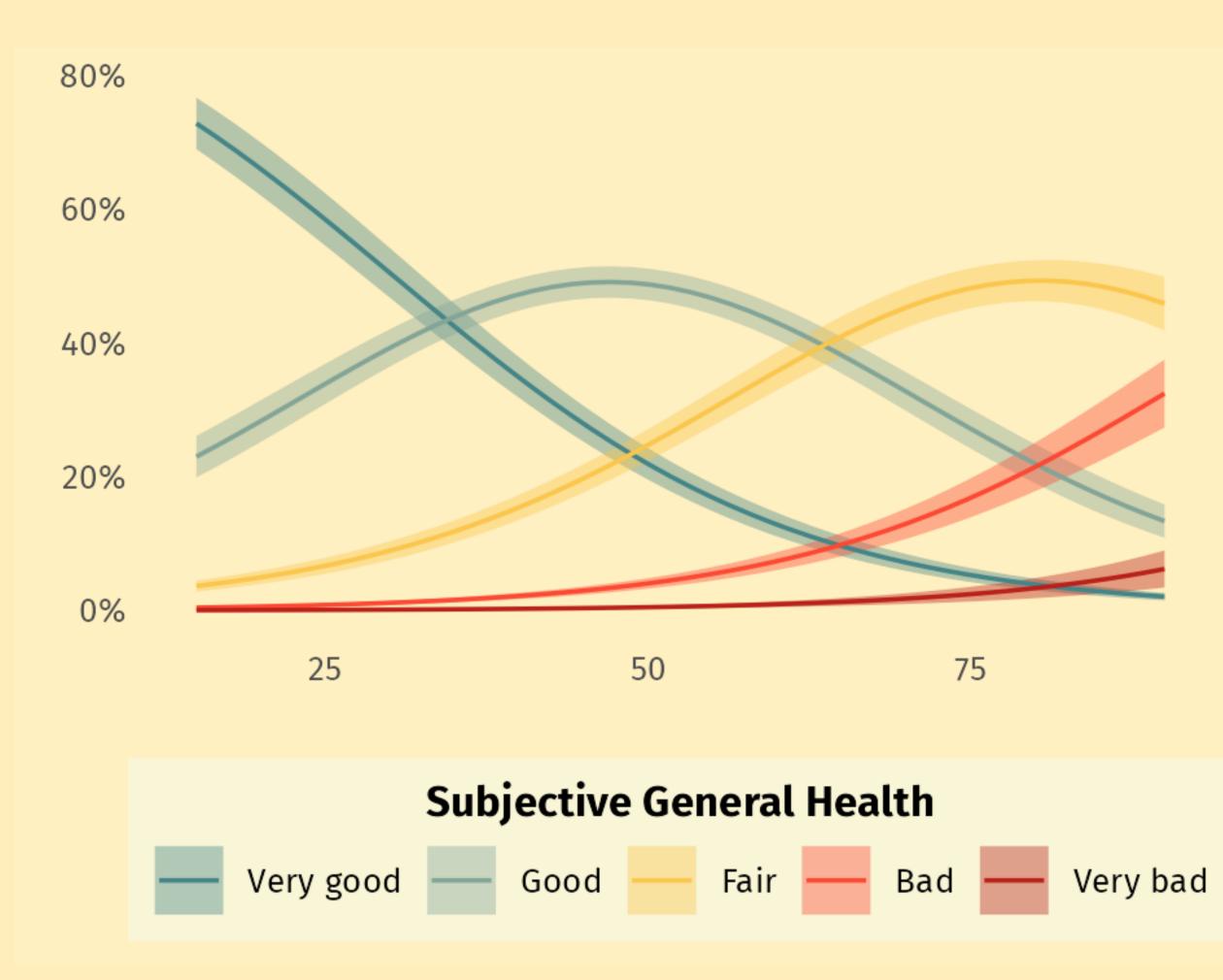
model).

This fixes the bias, but is more demanding on sample size.

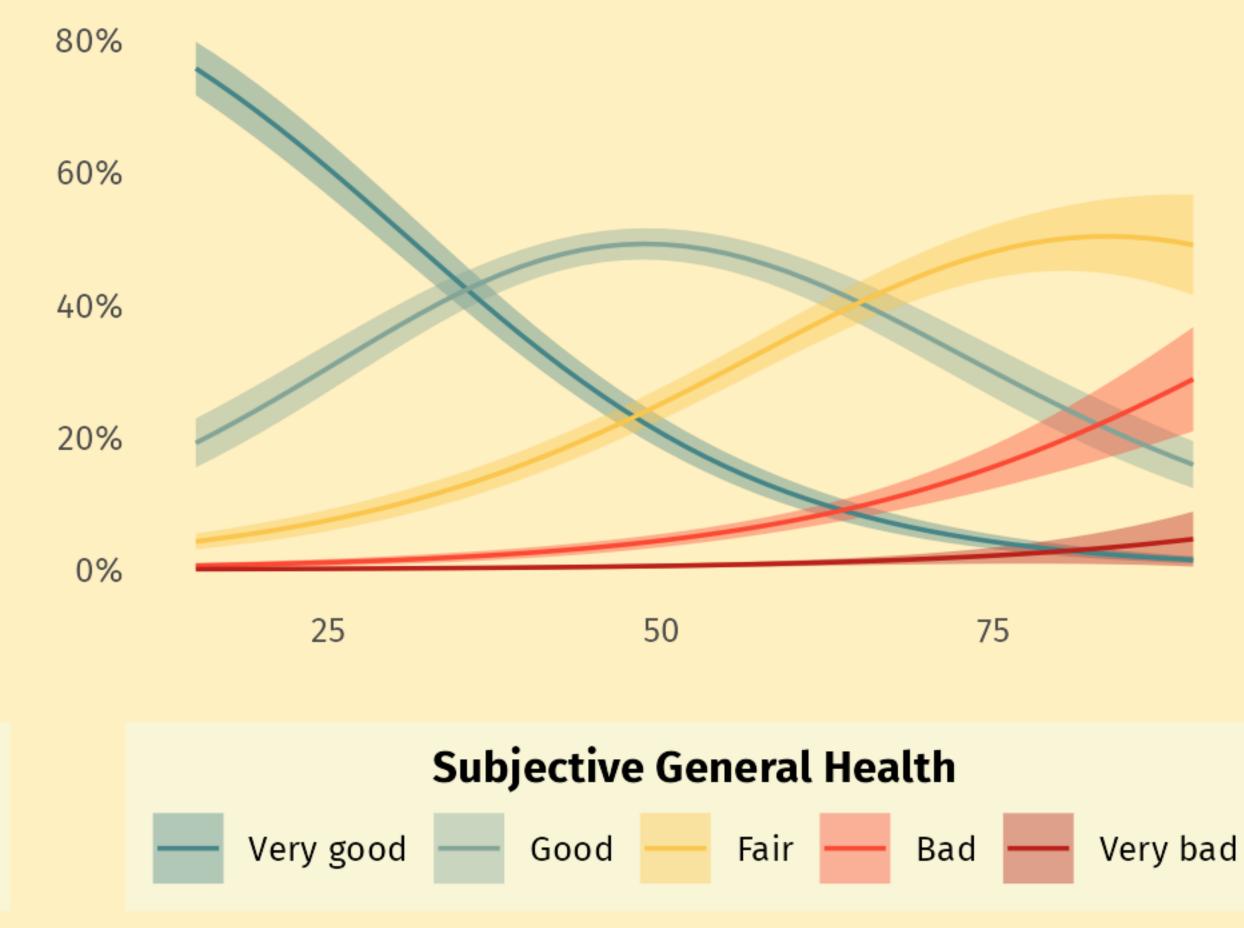
#### We can fix this by adding more parameters to the model (partial cumulative

## Age didn't need fixing...

#### Assuming proportional odds

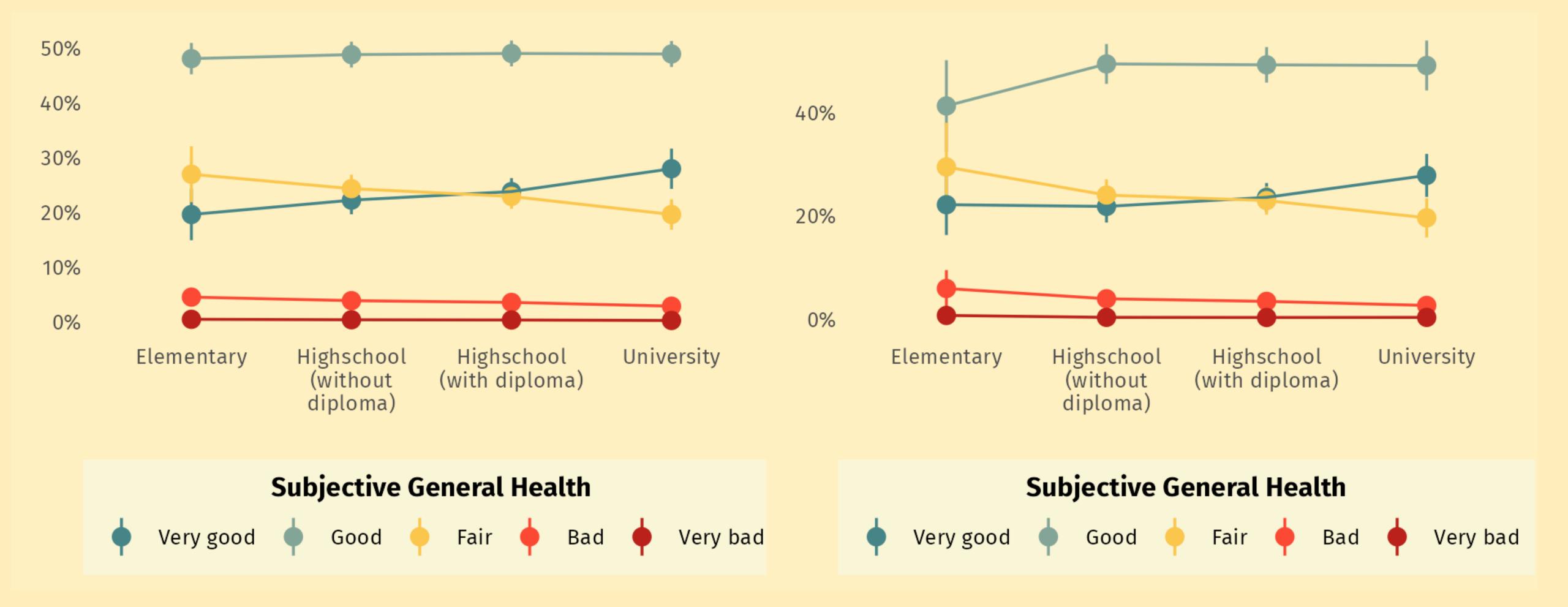


#### Not assuming proportional odds





## ...but there are (some) differences for Education



### If you are not sure, just try the more flexible model

The diagnostic plots can't detect complex non proportional relationships, e.g. interactions, nonlinearity.

If you are not sure, just fit a more flexible model.

Questions?

InteRmezzo!

### Item response theory (IRT)

Ordinal models very popular in measurement theory.

Allow to estimate properties of measurement tools, like difficulty, discrimination, measurement invariance.

Hanzlová, Radka. 2022. "An Item Response Theory Analysis and Psychometric Properties of the Czech Version of the Satisfaction with Life Scale." Survey Research Methods 16(3): 371–385. ISSN 1864-3361. Available at: https://doi.org/ 10.18148/srm/2022.v16i3.7940.



# **Multinomial models**

#### **Multionomial models**

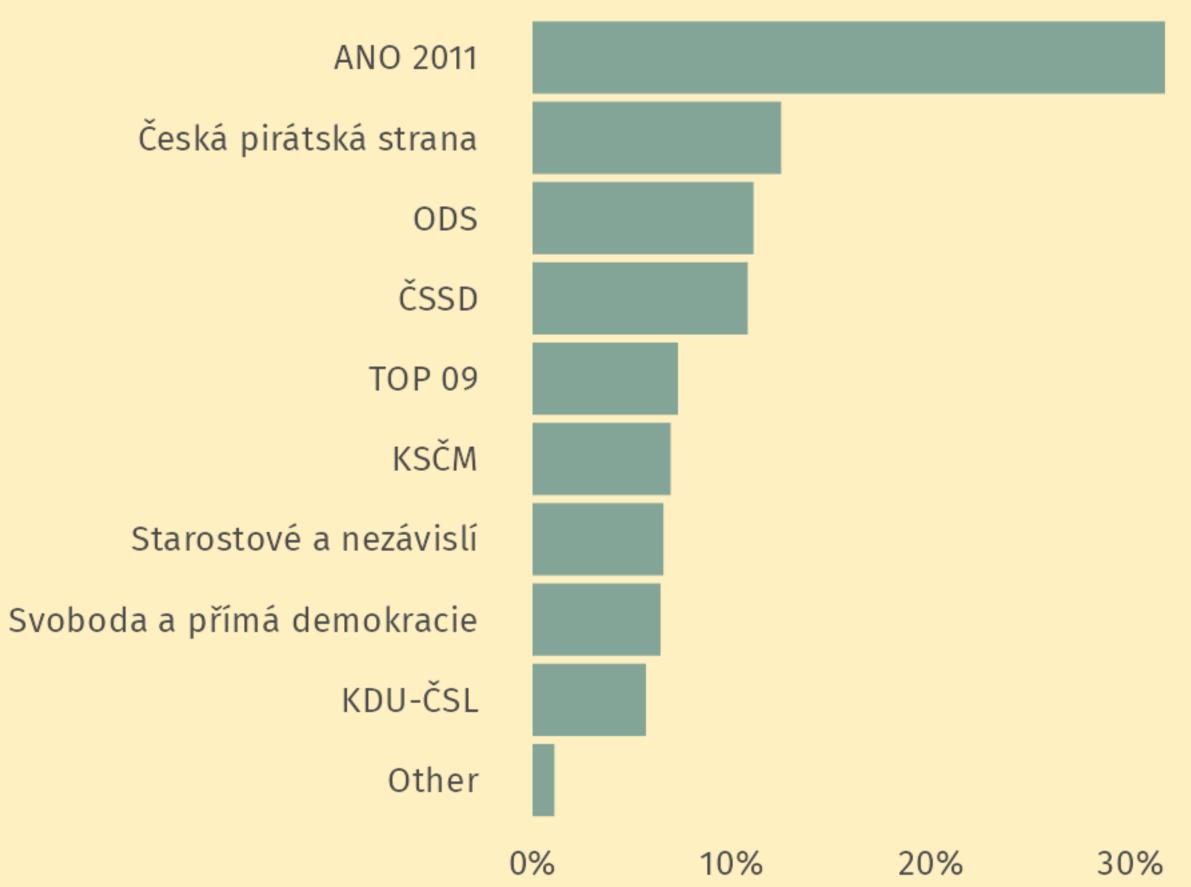
For nominal data

- Party preferences
- Product preferences
- University majors

Extension of binary model, just like the ordinal version before.

## Party preferences in Czech Republic

What party did you vote for in the last parliamentary elections?



## **Multinomial logistic regression**

distances between them.

Downside: most complex to estimate

- Computationally intensive
- Requires larger sample size (compared to binary/ordinal)
- Convergence problems are not uncommon

#### Most flexible model, no assumption about order of response categories or

### Multionomial regression

One response category is arbitrarily chosen as the reference group, similarly to dummy coding (it doesn't matter which).

Model estimates effect of predictors on change from reference group to each of the other ones.

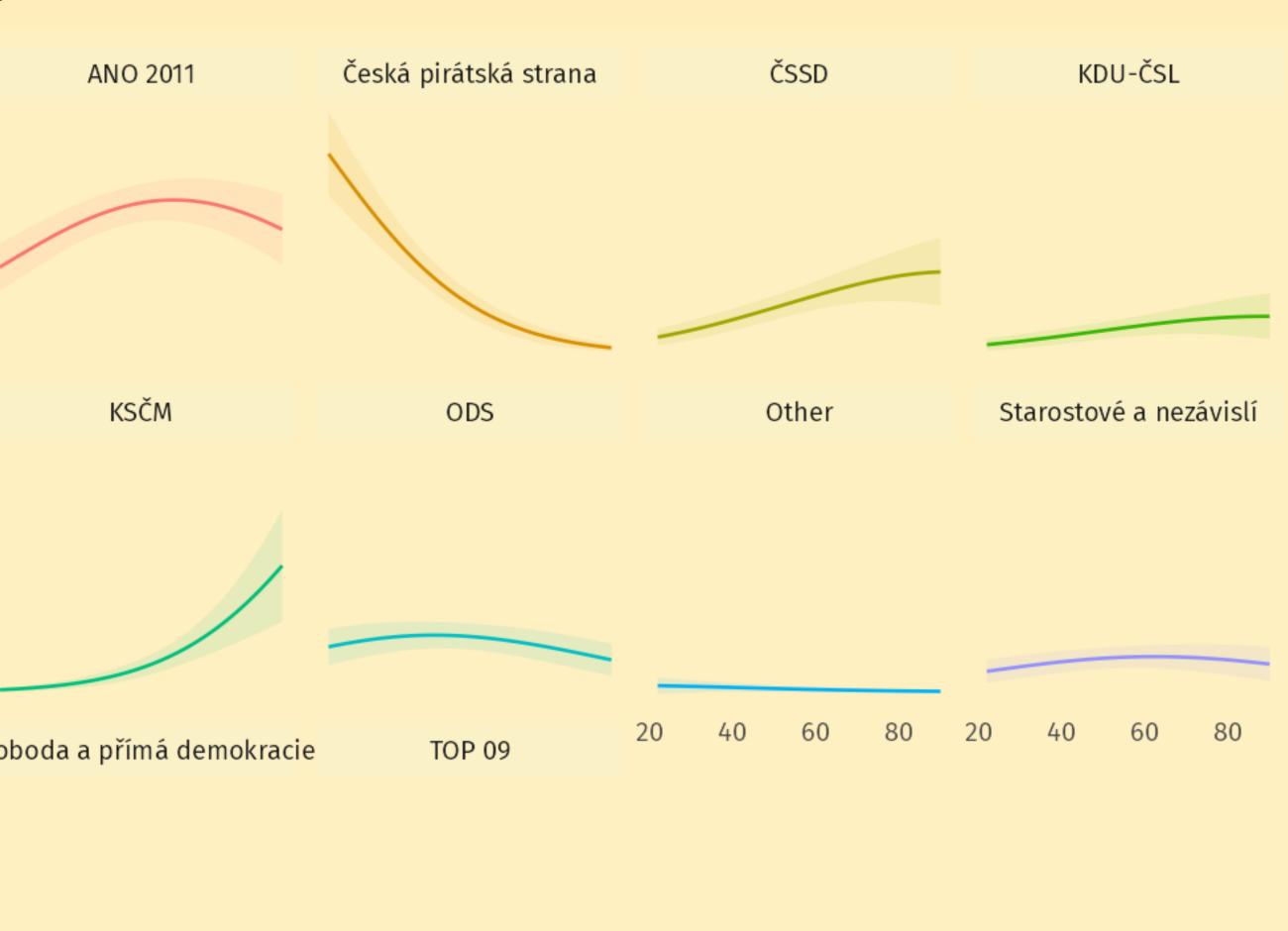
In practice, this means you'll get a ton of coefficients with little way to interpret them.

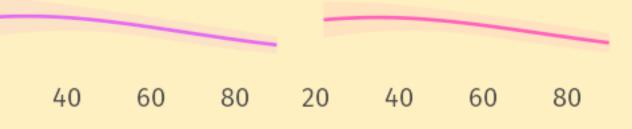
You know the answer and so do I: marginal effects on probability scale.



### Party preferences and Age

| Category                      | Marginal effect | 0.5          |
|-------------------------------|-----------------|--------------|
| Česká pirátská strana         | -0.0055         | 0.4<br>0.3   |
| Svoboda a přímá<br>demokracie | -0.0001         | 0.2<br>0.1   |
| 9 TOP                         | -0.0008         | 0.0          |
| ODS                           | -0.0003         | 0.5<br>0.4   |
| Starostové a nezávislí        | 0.00030         | 0.3<br>0.2   |
| KDU-ČSL                       | 0.00010         | 0.1<br>0.0 - |
| ANO 2011                      | 0.00111         | Svol<br>0.5  |
| ČSSD                          | 0.00211         | 0.4<br>0.3   |
| KSČM                          | 0.00348         | 0.2<br>0.1 _ |
| Other                         | -0.00034        | 0.0<br>20    |





### Party preferences and Education



Questions?

InteRmezzo!

# Assumptions

### Independence of irrelevant alternatives assumption

The most important assumption is the independence of irrelevant alternatives.

We assume that adding/removing a category won't change relative popularity of the rest.

Example: In presidential elections between Babiš and Pavel, a third candidate entering the race shouldn't make some of Pavel's voters switch to Babiš (or vice versa).

### Independence of irrelevant alternatives assumption

No easy way to check this - this is a problem of psychology, not statistics.

third candidate).

Most problematic for for hypothetical predictions.

Can be solved by switching from logit link function to probit.

- Matters less if we know the options are fixed (e.g. we know there wont be a

Questions?