Propensity techniques Aleš Vomáčka

The Plan

- How to estimate propensity scores
- How to apply the scores
 - Propensity scores matching
 - Propensity score weighting
- Advantages and Disadvantages, assumptions

Estimating propensity scores

Pre-election Debates & Opinion Change

- How effective are pre-election debates at changing voter preferences?
- Data from the last presidential elections, shorty before the 2nd round.
- Variables of interest:
 - debate have the respondent seen the last debate?
 - change have the respondent changed candidate after debate?
 - election_cand_before which candidate preferred before debate?

The Problem

• Who sees the debate isn't random.

- Potential Outcome Framework
 - Ignorability may be violated

- Directed Acyclic Graphs Framework
 - There may be a backdoor path from debate to change.

The (Potential) Solution

- We can try estimating probability of receiving treatment and...
 - ...achieve conditional ignorability
 - ...close the backdoor path

- How do we do it?
 - One option are propensity techniques

Propensity Scores Techniques

- Jager, K. J. (2022). An introduction to inverse probability of treatment https://doi.org/10.1093/ckj/sfab158

• Zhao, Q.-Y., Luo, J.-C., Su, Y., Zhang, Y.-J., Tu, G.-W., & Luo, Z. (2021). Propensity score matching with R: Conventional methods and new features. Annals of Translational Medicine, 9(9), 812. <u>https://doi.org/10.21037/atm-20-3998</u>

• Chesnaye, N. C., Stel, V. S., Tripepi, G., Dekker, F. W., Fu, E. L., Zoccali, C., & weighting in observational research. Clinical Kidney Journal, 15(1), 14–20.

Propensity Scores

• Propensity scores - conditional probability of receiving treatment

• The probability is conditional on potential confounders.

• This means that the first step is...

Step 1 - Drawing the DAG

Step 2 - Estimating propensity scores People who saw the debate and people who didn't see the debate.

 Many models to do so, logistic regression most common (but newer methods more robust/convenient)

Questions?

Step 3 - Choosing Method

Propensity Scores

Propensity scores matching

Propensity scores weighting

Step 4a - Propensity Score Matching

Match respondents who got the treatment and respondents who didn't with similar propensity scores.

Toss the rest.

Step 4a - Propensity Score Weighting

• Transform the probabilities of receiving treatment into weights.

- Give higher weight to respondents with:
 - Low probability of receiving treatment, but ultimately got it.
 - High probability of receiving treatment, but ultimately didn't got it.

- In short, give higher weights to the less expected outcomes.
- Many ways to do it.

Step 4a - Inverse probability treatment weights

OG approach - Easy to compute, widely used

 $w_i = \frac{1}{p_i} \qquad if Treat = 1$ $w_i = \frac{1}{1 - p_i} \qquad if Treat = 0$

Where p_i is the estimated probability of receiving treatment for every respondent i

Step 4a - Full Optimal Matching

- Newer approach
- More robust, but harder to compute combines matching and weights

$$w_{i} = \frac{p \cdot (m+j)}{m}$$
$$w_{i} = \frac{(1-p) \cdot (m+j)}{j}$$

Where *p* is the marginal (average) probability of receiving treatment, *m* is the number of respondents in matching set who received treatment and j is the number of respondents without treatment in the matching set.

if Treat = 1

n+j) if Treat = 0

Step 4 - IPTW vs Full Optimal Matching

Austin, P. C., & Stuart, E. A. (2017). The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes. Statistical Methods in Medical Research, 26(4), 1654–1670. <u>https://doi.org/10.1177/0962280215584401</u>

Questions?

Step 5 - Balance checking

- Once you have matched/weighted the data, you need to check whether the treatment and control groups are balanced.
- i.e. whether they no longer differ in observed confounders.

Step 5 - Balance checking

- Tables of visually.
- After matching/weighting, there should be no difference between treatment and control groups

Covariate Balance

sex_Žena age* pol_interest_Velmi pol_interest_Docela pol_interest_Jen trochu pol_interest_Vůbec ne edu_Základní, neukončené základní edu_Střední bez maturity, vyučen bez maturity edu_Střední s maturitou, vyučen s maturitou edu_Vyšší odborné edu_VŠ do úrovně bakalářského včetně edu_Vysokoškolské nad úroveň bakalářského first_round_Ne

election_cand_before_Petr Pavel

~	•
0.	.2

Step 6 - Estimate The Effect

- If the matching/weighting were successful, you have
- control group represents the treatment causal effect.

• Congratulations, you have made it! (maybe, you can never be sure...)

achieved conditional ignorability/closed backdoor paths.

The estimated difference between between treatment and

Weighting Summary

- Advantages:
 - Doesn't throw away data.
 - Can estimate Average treatment effect on population.

- Disadvantages:
 - Can produce large weights, which makes results unstable.
 - Try explaining it to someone...

Matching Summary

- Advantages:
 - Easy to do (explain)
 - Robust to outliers.

- Disadvantages:
 - Throws aways data
 - Can only estimates Average Treatment on Treated!!
 - population, only people in the sample

Because we threw away part of the data, we no longer have unbiased estimate for the

No Unobserved Confounders Assumptions

- Both approaches assume you have accounted for all confounders.
- At least the important ones.

• Good luck proving it...

Propensity Techniques vs Simple Conditioning

- Why use propensity scores, when we can control for variables directly?
- Propensity scores:
 - More efficient when number of predictors is large.
 - Can check balance

- But some people like to use treatment probabilities as a control variable.
- Some techniques use both (doubly robust estimators), worth checking out.

Questions?

InteRmezzo!