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Modeling categorical variables 1:
Binary outcomes



Lesson Goals

• Compute binary logistic regression 

• Interpret binary logistic regression 

• Learn how working with GLMs differ from linear regression



Binary variables are everywhere

Voter Turnout

Sex

Election Turnout

Smokers/Nonsmokers

Politic. Protest Participation

Buyer/Nonbuyer

User/Nonuser
Diploma/Without Diploma



Binary outcomes and linear regression
What are the problems?



Binary outcomes and linear regression
What are the problems? 

• Linearity - unreliable point estimates 

• Homoskedasticity - unreliable std. errors 

• Normality - unreliable std. errors



Binary variables are everywhere

Voter Turnout

Sex

Election Turnout

Smokers/Nonsmokers

Politic. Protest Participation

Buyer/Nonbuyer

User/Nonuser
Diploma/Without Diploma



What distribution would fit better? 
What do we know about the outcome?



Cooking with GLMs tips: 
Pick distribution that matches known properties of the 
outcome.



Binomial distribution

Predicts probability of “successes” across number of trails. 

 

Number of correct answers on an exam. 

Number of people voting for specific party in population. 

Number of times a coin lands on head.

Mean(x) = p ⋅ k; Var(x) = p ⋅ (1−p) ⋅ k

Binomial(p, k)

Probability of success Number of trails
Binomial(0.8, 5)

Binomial(0.2, 1)

Binomial(0.5, 10)



Predicting Palmer Penguins

We want to predict whether a 
penguin is male or female. 

In stats lingo, every penguin has 
one “attempt” to be male and we 
are interested in the probability of 
“success”. 



Let’s start simple

We know the number of “successes” = 1. 

Only have to estimate the probability 
that a penguin is male.

sex ∼ Binomial(β0, 1)
No predictors, only interested in 
how many penguins are males.

Problem: Probability is bounded 
between 0 and 1. How do we make sure 
our model knows that?

Solution: Link functions to the rescue!



Questions?



Choosing link functions - Common suspects

Link functions are used to make sure outcome y is transformed into an unbounded form 

Many possible options, but 3 are the most common

Identity Log Logit



Identity link function

Literally just  

When the outcome is unbounded, 
no transformation is necessary. 

Linear regression is a prominent 
example.

identity(x) = x ⋅ 1



Log link function

 

When the outcome is outcome is 
bounded from bottom (e.g. 0), we 
can “unbound” using logarithms. 

Counts (number of children in 
family, police stops) are bounded 
by zero.

link(x) = log(x)

On the original scale, the 
minimum is zero….

… but on log scale, we 
can stretch it all the way 
to −∞



Logit link function

 

When the outcome is outcome is 
bounded from bottom and top (e.g. 
between 0 and 1), we can “unbound” 
using logarithms of odds. 

Probabilities and concentrations are 
bounded from both sides.

link(x) = log ( probx

1 − probx )

Bounded by 0 on 
original scale… …but not on transformed 

one

Bounded by 1 on original 
scale…

…but not on transformed 
one



Choosing link functions - Common suspects

Identity Log Logit
When outcome is unbounded 
(or far from bounds)

When outcome is bounded 
from bottom (e.g. 0)

When outcome is bounded 
from both bottom and top 
(e.g. 0 and 1)

Attention check: What link function is used to predict 
probability that a penguin is male?



Questions?



Penguins in their final form

We are predicting penguin’s sex using binomial regression with logit link. 

(Colloquially, binomial “regression with logit link” = (binary) logistic regression) 

The output are log odds of a penguing being male. 

logit(sex = male) ∼ Binomial(β0, 1)



Penguins in R

logit(sex = male) ∼ Binomial(β0, 1)

Theoretical model:

Representation in R:

glm(sex ~ 1, family = binomial(link = "logit")

glm(sex ~ 1, family = binomial()

or just



Penguins in R - results
logit(sex = male) ∼ Binomial(0.018, 1)

Where the hell this number came from?

There are 165 female and 168 male penguins in the sample.

The probability of a penguin being male is 168
168 + 165

= 0.505 = 50.5 %

The odds of a penguin being male are . 
In other words, there are 102 males for every 100 females

0.505
1 − 0.505

=
0.505
0.455

= 1.02

The log odds (logits) of a penguin being male are log(1.02) ≈ 0.018



Predict penguin sex using body weight

Interpretation same as for linear regression: 

For penguin with 0 weight, the expected log odds of being male are -5.16. 

For every 1 kilogram increase, the expected log odds of being male increase by 1.24. 

(Remember, this is just a correlation)

logit(sex = male) ∼ Binomial(β0 + β1 ⋅ weightkg, 1)

logit(sex = male) ∼ Binomial(−5.16 + 1.24 ⋅ weightkg, 1)



Questions?



The big question: 
How the f***k we are supposed to interpret this?



There are two ways to interpret logistic regression

1) Exponentiating coefficient
This is what most people do.

It doesn't actually work.

2) Marginal effects on probability scale
This one actually works.



R Intermezzo!



Interpreting logistic regression



Interpreting Logistic regression

Exponentiation of regression coefficients  

What most people use, most textbook teach. 

Two big problems:

1) Odds ratios are actually not intuitive units.

2) Logistic regression is non-collapsible.



What is non-collapsibility?



!WARNING! 

MINDBLOWN INCOMING
(So grab a coffee now, if you need)



The Plan
1. What non-collapsibility causes 

2.What actually is non-collapsibility 

3.How to fix/avoid non-collapsibility



Linear regression and control variables

Our dependent variable is personal wellbeing (scale -50 to 50)

Independent variables are age, gender and income (in thousands).  

All the predictors are independent of each other. Sample size is 1 000 000.

We want to estimate the effect of age on wellbeing. What variables we need to 
control for?



Linear regression and control variables

The true model is  

wellbeing ∼ Normal(−150 + 1 ⋅ age + 2 ⋅ gender + 1 ⋅ income,15)

This is the result we want

Model 1 Model 2 Model 3

Age 1 1 1

Gender 2 2

Income 1



Linear regression and control variables
To get correct estimates, we need 
to control for all confounders.

X Y

Z Confounder

In our example, the predictors are 
independent, so no confounders.

WellbeingIncome

Gender

Age



Again, but with logistic regression

Our dependent variable is personal voter turnout (binary).

Independent variables are age, gender and income (in thousands).  

All the predictors are independent of each other. Sample size is 1 000 000.

We want to estimate the effect of age on voter turnout. What variables we 
need to control for?



Again, but with logistic regression

The true model is  

logit(turnout) ∼ Binomial(−80 + 1 ⋅ age + 2 ⋅ gender + 1 ⋅ income,1)

This is the result we want

Model 1 Model 2 Model 3

Age 0.3 0.32 1

Gender 0.64 2

Income 1



In logistic regression model, 
coefficients are not unbiased 
estimates of the true relationship, 
unless you control for all causal 
determinants.



What you can't do with logistic regression

Interpret regression coefficient as strength of relationship (will underestimate) 

Compare coefficients across models 

Compare coefficients across datasets 

Compare coefficients across subpopulations



What you can't do with logistic regression - Example
We want to compare relationship between turnout and age across Czechia and 
Germany.

Results:
Czech model German model

Coefficient for Age 0.3 0.09

Naive interpretation: In Czechia, age is more important than in Germany.

But actually, these are the true values:  

Czech model:       

German model: 

logit(turnout) ∼ Binomial(−80 + 1 ⋅ age + 2 ⋅ gender + 1 ⋅ income,1)

logit(turnout) ∼ Binomial(−180 + 1 ⋅ age + 2 ⋅ gender + 4 ⋅ income,1)

Effect of Age is the same 
for both countries

It's the effect of 
(uncontrolled for) 
income that's different



What you can't do with logistic regression

Interpret regression coefficient as strength of relationship (will underestimate) 

Compare coefficients across models 

Compare coefficients across datasets 

Compare coefficients across subpopulations

Silver lining 

Statistical significance is not affected 

Direction of effect (positive/negative) is not affected



Questions?



Non-collapsibility so far...

1. Logistic regression can't be interpreted using regression coefficients.



So, regression coefficients in logistic regression 
are uninterpretable. 

Why?

Non-collapsibility

Mood, C. (2010). Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We 
Can Do About It. European Sociological Review, 26(1), 67–82. https://doi.org/10.1093/esr/jcp006


https://doi.org/10.1093/esr/jcp006


What is non-collapsibility?

Two explanations: 

1) Graphical explanation (what is happening) 

2) Latent variable explanation (why it's happening)



Graphical Explanation



Collapsibility - Linear regression

 

Model with only age as predictor. 

The slope is 1.

wellbeing ∼ N(−150 + 1 ⋅ age, 15)



Collapsibility - Linear regression

 

Model with age and gender as 
predictors. 

The slope is for age is still 1 

(age and gender are independent).

wellbeing ∼ N(−150 + 1 ⋅ age + 2 ⋅ gender, 15)



Collapsibility - Linear regression

 

It doesn't matter, if we control gender 
or not.  

Removing gender from model just 
squishes/collapses the lines. 

Slope remains the same. 

Linear regression is collapsible.

wellbeing ∼ N(−150 + 1 ⋅ age + 2 ⋅ gender, 15)



Collapsibility - Logistic regression

 

Slopes across models are not the 
same! 

squishing/collapsing the 
subpopulation lines doesn't give the 
population effect. 

Logistic regression is noncollapsible.

logit(turnout) ∼ Binomial(−80 + 1 ⋅ age + 2 ⋅ gender + 1 ⋅ income,1)



Questions?



Latent variable explanation



(Un)explained variance in linear regression

In linear regression, the dependent variable has fixed variance. 

We can predict/"explain" this variance by adding predictors into the model. 

(Predicted variance measured by ) 

In logistic regression, this is not the true! 

R2



(Un)explained variance in logistic regression
Logistic regression assumes there is 
a latent (= unobservable) variable. 

(e.g. propensity for being male, 
propensity to go to elections) 

The observed binary variable is a 
manifestation of the latent one. 

We are estimating threshold on the 
latent scale.

Penuins above threshold 
are observed to be male

Penuins below threshold 
are observed to be 

female



(Un)explained variance 
in logistic regression
The problem: To estimate the 
threshold, we need to know what 
the latent variable looks like. 

We don't know what it looks like. 

Solution: Just assume a fixed mean 
and standard deviation (usually 0 
and 1.81)



Core of noncollapsibility 

Null model:  

The assumed total variance of the dependent variable is 1.81

logit(turnout) ∼ Binomial(β0, 1)

Age model:  

The assumed total variance of the dependent variable is 1.81 + var. explained by age!

logit(turnout) ∼ Binomial(β0 + β1 ⋅ age, 1)

The total variance of the dependent variable changes, based on predictors!



In logistic regression, 
coefficients are in different units, 
depending on population and 
predictors.



Questions?



Non-collapsibility so far...

1. Logistic regression can't be interpreted using regression coefficients. 

2. Coefficients are non-collapsible due to being in different units - we can't 
get the population slopes by squishing subpopulation ones together.



How to solve noncollapsibility



1) The good solution - Marginal effects on probability scale 

2) The quick & dirty solution - Linear probability models



Marginal effects



Marginal effects

Problem - the regression coefficients are not interpretable 
on logistic scale. 

Solution - Work on probability scale! Enter marginal effects.



Marginal effects are slopes
Marginal effect - slope of the 
regression line at given value of 
predictor. 

Marginal effects at the age of 40 is 
0.0717 

For people who are 40 years old, 
one year change in age is associated 
with 0.0717 increase in the 
probability of going to elections.



Marginal effects as difference in predictions
Computing slopes analytically is pretty hard. We approximate them instead.

Age Predicted Turnout for 
Age Age + 0.001 Predicted Turnout for 

Age + 000.1
Difference * 100 

(aka marginal effects)

40 0.4221270 40.001 0.4221986 0.00717

41 0.4949359 41.001 0.4950093 0.00734

41 0.4949359 41.001 0.4950093 0.00734

42 0.5679603 42.001 0.5680323 0.00721

43 0.6381457 43.001 0.6382135 0.00679

44 0.7028937 44.001 0.7029551 0.00613

44 0.7028937 44.001 0.7029551 0.00613

45 0.7604060 45.001 0.7604595 0.00535



Average marginal effects
Individual marginal effects (for 
each observation) are hard to 
interpret. 

Average marginal effects (AME) = 
average of individual effects (duh) 

On average, people who are 1 year 
older have 0.0563 points higher 
probability to go to elections.



(Average) marginal effects are collapsible!

On average, people who are 1 year older have 0.0563 points higher probability 
to go to elections.

Model 1 Model 2 Model 3

Age 0.056 0.056 0.056

Gender 0.124 0.124

Income 0.061

They are the same!



Marginal effects

Advantages 

Probabilities are easy to interpret. 

Collapsibility is gone. 

Disadvantages 

Marginal effects are not linear (so always also plot look at the prediction plot) 

Not available in all software (looking at you, SPSS)



Linear probability models



Statistics has a dirty secret.... 

You can use linear regression for 
binary data!* 
(*Sometimes)



Linear probability models...

... are just linear regression with 
binary dependent variable. 

This shouldn't work. 

But with some tweaks, it can 
actually give you correct average 
marginal effects estimates.



It just works...

Model 1 Model 2 Model 3

Age 0.056 0.056 0.056

Gender 0.124 0.124

Income 0.0612

Just use lm() as usual. 

Notice that the coefficients are the same as average margin effects from 
logistic regression!



... but there are caveats

Linear regression assumptions are still important. 

Normality assumptions is violated (so std. errors. are wrong), but can be 
ignored if sample size is big enough. 

Homoscedasticity assumption is violated (so std. errors are wrong), but you 
can salvage it by using robust standard errors. 

Linearity assumption is violated, but if you are lucky, you can still get good 
marginal effects estimate.



Sometimes it doesn't work.
"If the main purpose of estimating a binary response model 
is to approximate the partial effects of the explanatory 
variables, ... then the LPM often does a very good job. 

But there is no guarantee that the LPM provides good 
estimates of the partial effects for a wide range of covariate 
values, especially for extreme values of x."

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data, 
second edition. MIT Press.



Linear probability models

Advantages: 

Super easy to implement in every software. 

Often provide good approximation of Average marginal effects. 

Disadvantages 

Sometime just fails for (seemingly) no reason.



Questions?



Non-collapsibility in nutshell

1. Logistic regression can't be interpreted using regression coefficients. 

2. Coefficients are non-collapsible due to being in different units - we can't 
get the population slopes by squishing subpopulation ones together. 

3. Interpret logistic regression using (average) marginal effects on probability 
scale.



InteRmezzo!



Fit indices



Model fit indices 
In linear regression, we can asses how well the model fits the data, we use 
indices like coefficient of determination ( ). 

In generalised linear models, we can't use . 

Two options instead: 

1) Information criteria. 

2) Pseudo 

R2

R2

R2



Information criteria

How much information we loose by reducing data into model. 

The number itself is not interpretable. 

Information criteria are used to compare models against each other.

Aikake Information Criterium (AIC) Penalizes for number of predictors, 
basically R squared

Bayesian Information Criterium (BIC) Penalizes for number of observations



Information criteria for our models

Predictors AIC BIC

Model 1 Age 1 128 000 1 128 000

Model 2 Age, Gender 1 108 000 1 108 000

Model 3 Age, Gender, Income 254 700 254 700

Lowest number means, using this model 
leads to smallest loss of information



Questions?



Pseudo Coefficient of Determination
Tries to imitate classical  - values between 0 and 1. 

Based on comparing intercept-only and our models (usually). 

Actually many different versions (Cohen's, Cox & Snell's, Nagelkerke's, Tjur's). 

Caveats: 

 - Not actually proportion of explained variance. 

 - Magnitude has to be interpreted differently from LM (e.g. 0.8 is actually 
almost perfect)

R2



Pseudo  for our modelsR2

Predictors Pseudo R Sqr. 
(Tjur's version)

Model 1 Age 0.204

Model 2 Age, Gender 0.222

Model 3 Age, Gender, Income 0.841

Highest number means this models fits 
best.



Fit indices 

• We can't use classical  

• Two other options: 

• Information criteria - how much information we lose (AIC, BIC) 

• Pseudo  - kinda like "explained variance" (but not really)

R2

R2



Questions?



Assumptions



Logistic regression assumptions

1) Valid and reliable measurement 

2) Representative sample 

3) Linearity (between logit and predictors) 

4) Independence of observations



Linearity Assumption

Classical residual plots are 
not great here. 

Observed values are either 0 
or 1. 

Residual plot will look even if 
the model is correct.



Linearity Assumption - what to do?

If not classical residuals, then what? 

1) Binned residuals (great, but only for logistic regression) 

2) Randomized residuals (less common, but works for every model)



Linearity assumption - binned residuals

1) Cut the plots into bins. 

2) Compute the mean of 
residuals for each bin.  

3) Interpret as usual.



Linearity assumption - binned residuals

1) Cut the plots into bins. 

2) Compute the mean of 
residuals for each bin.  

3) Interpret as usual. Points 
should be spread around zero 
with no pattern.

Nonlinearity!



Linearity assumption - binned residuals

1) Cut the plots into bins. 

2) Compute the mean of 
residuals for each bin.  

3) Interpret as usual. Points 
should be spread around zero 
with no pattern.

Looks good!



Questions?



Linearity assumption - Randomised residuals
Randomised residuals based on simulating 
data from our model. 

How to make them: 

1) Simulate new values for every respondent/
observations based on you model. 

2) Count how many times the simulated values 
are lower than the observed value. 

3) Randomised residual is the proportion of 
times the simulated values were lower than 
the observed value.



Linearity assumption - Randomised residuals

Linearity violated Linearity fulfilled



Binned vs Randomised residuals

Binned residuals 

- (Perhaps) easier to understand 

- Only work with binary logistic regression 

Randomised residuals 

- Computation more involved 

- Work for every model

For binary logistic 
regression, both 
approaches work!



Questions?



InteRmezzo!


