
Abstract
"egyn" is a global type registry that lives on-chain. Its main goals is to curate and manage primitives in order

to secure the software supply-chain. Each entry is a mapping between Content URI's that resolve to

package metadata and allow users to audit sources and use cannonical implementations of code that are

reused often in the ecosystem. To acheive this, a smart contract is used as a one-of-many source of truth, in

addition to a publishing step that leverages semantic web constructions in order to increase the legibility of

ABI interfaces. This new standard leans on pre-existing ERC-18201 to retrieve functionality from deployed

contracts.

Introduction
As it stands, there are several problems that exist in the blockchain space as it pertains to reusing code:

Lack of deep introspection. Currently there is a reliance on block explorers to "verify" contracts by

checking bytecodes against sources provided by the author. While this provides a way to quickly

check the set of interfaces a contract supports, it lacks the ability to track dependencies.

Furthermore, methods can be obfuscated using similar function name signatures. There are also

centralization concerns as the data is cumbersome to consume on-chain since it is behind an API

provided by these services.

Discoverability of primitves, libraries, etc. There are no places to find pre-deployed libraries of

code on-chain causing many projects to redeploy the same implementations such as precompiles,

ERC contracts, applications that have broad use in the ecosystem, etc.

Readability for auditors. Often when conducting an audit, package repos are supplied in addition

to the code itself. Hardening existing contracts with metadata that supplies prior audit reports will

speed up the ability to develop more secure code.

These considerations are the motivation to create a standard that projects can coalesce around to create

new protocols and modularize their platforms more efficiently reducing the amount of repeat contracts that

get deployed on-chain.

Background

In software ecosystems outside of blockchains there has been a notion of package managers such as npm
to help developers quickly iterate on original ideas. To enable code reuse, security is taken head on by

leveraging public-key infrastructure to sign package manifests and then host them on a curated website.

Here, one can see the widespread use of a particular primitive and make the decision to contribute or fork a

new version with additional features or make different design decisions. Broadly speaking, the adoption of

this technology has not made its way into the space for a variety of reasons, see EthPM2. While similar in

spirit, Egyn attempts to bridge the gap by giving more tools for curation, in addition to providing a succiinct

metadata standard that is composable. The scope of previous projects have concerned themselves solely

with Solidity code, where as Egyn will attempt to encourage other ecosystems to get involved by allowing

them to publish a set of keys that can be used to verify package signatures of all types. Primitives are then

shared and discoverable given a set of semantics.

For example, the function mapReduce exists as a construction in many languages that can be curated on-

chain. Developers and auditors can then check new implementations against previous ones that may have

already gone under the same scrutiny. Furthermore, as projects begin to make their protocols more modular,

https://eips.ethereum.org/EIPS/eip-1820
https://docs.ethpm.com/
DRAFT

this can be used to check that interoperability is preserved while contributors/maintainers make changes to

the underlying protocol.

Solution

Egyn sets out to solve these problems by introducing several components including a smart contract

registry, IPLD-based metadata system, and various curation mechanisms that allow both the project itself,

as well as participants, to define their own rules for publishing updates and propagating changes with proxy

contracts. In the following sections we will formally define the protocol, going in depth for each of the

constructions. The next section will give a high level overview of these components. It will explicate the path

for onboarding existing packages using the pre-established public-key infrastructure.

The following section 2.4 will outline the registry contract responsible for publishing. Then we will describe

the metadata standard in Section 3 that will ultimately serve as the package manifest and how it will

leverage DAG-JSON. Here, the mininal requirements are defined for composability and required fields.

Protocol Overview / Definition (Section 2)
There are several actors in the protocol, namely package owners, registry operators, and data relayers. First

we will look at the responsibility package owners have including their roles in the context of the registry.

2.1 Package maintainers

The main role of package maintainers is to keep manifests up-to-date with the latest version of their code

and provide signatures for others to verify the authenticity of manifests published to the registry. It is

assumed that they have an Ethereum public/private keypair. Formally, every maintainer will have to submit

the following:

{
 "ttl": 1698233087,
 "signature":
"iQEzBAABCgAdFiEEGInq7S25O/ff+zymwaG5EGnEr1kFAmLWpkEACgkQwaG5EGnE...",
 "algo": "pgp",
 "publicKey":
"xsBNBFmUaEEBCACzXTDt6ZnyaVtueZASBzgnAmK13q9Urgch+sKYeIhdymjuMQta..."
}

ttl: time to live for the signatures before requiring reapproval.

signature: string of the signed CBOR message.

algo: algorithm used to sign the message.

publicKey: the public-key of the signer.

In the beginning, Archetype will operate a service that verifies signatures to surface a curation mechanism

for maintainers. It will later receive commitment hashes of verified signatures from other operators that will

be stored in the registry. Note: while this is a novel scheme for handling basic types of signatures, more

advanced schemes will be supported as the scope of the service increases. This implies that this section is

subject to change or have additional fields when using COSE envelopes 3 for example.

2.2 Registry Operators

https://cose-wg.github.io/cose-spec/
DRAFT

While this protocol can provide a single instance of a registry that can be used canoncially across many

different applications, the goal is to integrate the registry spec into an a new ERC standard that would allow

other registries, which have the same interface, to share the same data repositories. Names of these

registries can be resolved either through ENS, or contract addresses provided by a package signer. This is a

desired consideration because it facilitates package maintainers to host their own sets of repositories that

may only want to surface frozen versions of distributions. Each operator has the responsibility of sharing

their signing keys and can choose to link their instance to other registries in the ecosystem. The motivation

for this would be to have deeper links in the semantic graph that will be elaborated in the next section.

2.3 Data Relaying

The main gas costs will fall onto package maintainers to submit their signatures, as well as any additional

updates to a content URI relevant to their releases. However, the goal will be to have a set of relayers

available to handle transaction load.

2.4 Contract Registry

At a high-level, there are three main components to the registry: signature verification, content URI

resolution, manage registry mappings for deployments. Below the interface will be outlined in Solidity code:

pragma solidity ^0.8.20;

interface ITypeRegistry {
 function submitSignature(bytes, uint256) external;
 function updateManifest(bytes, bytes, uint) external;
 function retrieveImplements(bytes) public view returns (memory address[]);
 function approveMaintainers(bytes, address) returns (bool);
 function commitments(bytes,bytes,bytes) external;
 function verifyDeployment(address) external verifierRole;
 function supportsStrict(address,bytes4[]) public view;
}

contract GlobalTypeRegistry is ITypeRegistry {
 // WIP
}

Metadata Specification (Section 3)
For each of the packages in the registry, there is an associated manifest URI that describes both the

primitives, as well as the basic metadata surrounding publishing. Leveraging DAG-JSON, the manifest can

be divided into subcomponents using IPLD to create a rich data structure.

3.1 Package Metadata

For each of the package, there must be at least a manifest that contains the code repository. From there,

additional fields can be added that do not conform to the strict specification outlined below. For example,

maintainers can attach an audit field to the document and link out to reports generated by audit teams.

{
 "name": "example-package",

DRAFT

 "version": "0.0.1",
 "manifestURI": "QmXg9Pp2ytZ14xgmQjYEiHjVjMFXzCVVEcRTWJBmLgR39U",
 "repository": "https://github.com/example-org/example-package.git"
}

See below for the basic outline of how the manifestURI resolves into a DAG structure that can contain

many different links to other linked data formats.

{
 "Data":{"/":{"bytes":"c29tZSBkYXRh"}},
 "Links":[{"Hash":
{"/":"QmXg9Pp2ytZ14xgmQjYEiHjVjMFXzCVVEcRTWJBmLgR39U"},"Audits":"reports","Tsize":8},
{"Hash":{"/":"QmXg9Pp2ytZ14xgmQjYEiHjVjMFXzCVVEcRTWJBmLgR39V"},"Primitives":"some
other link","Tsize":8}]
}

One of the links in this DAG structure will contain the manifest outlined in the previous section with a COSE

signature4. In the future, statements can be made using these envelopes and will be stored in the

commitments mapping inside the registry contract. It will be the basis of the sparse merkle tree used to

generate proofs about statements surrounding given packages.

 {
 "id": "did:example:123",
 "verificationMethod": [{
 "id": "#key-42",
 "type": "JsonWebkey",
 "controller": "did:example:123",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "P-384",
 "alg": "ES384",
 "x": "LCeAt2sW36j94wuFP0gN...Ler3cKFBCaAHY1svmbPV69bP3RH",
 "y": "zz2SkcOGYM6PbYlw19tc...rd8QWykAprstPdxx4U0uScvDcYd"
 }
 }]
 }

This will serve as the identity of a given signer for a code repository. When a statement is made, this will

need to be validated in addition to the receipt of the message. Archetype is committed to leveraging open

standards to achieve this functionality. For further reading about the topic please see the IETF standard for

COSE message signing for supply chains5.

In addition to commitments made about the codebase, developers can choose to implement their own linked

data structure to encapsulate their own logic. An example of how documentation can be handled using the

above specification would be to also share primitive metadata:

{
 "primitives": [
 {
 "id": "uint256",

https://datatracker.ietf.org/group/scitt/about/
https://datatracker.ietf.org/doc/draft-ietf-scitt-architecture
DRAFT

 "description": "Unsigned 256-bit integer",
 "type": "integer",
 "constraints": "0 <= x < 2^256"
 },
 {
 "id": "address",
 "description": "Ethereum address",
 "type": "string",
 "format": "hex",
 "length": 42
 }
]
}

While there are no strict enforcements for particular structures outside of signature verification, we implore

maintainers to use some of these templates to better document their codebase.

3.2 Method Byte Identifiers

A desired notion of deterministic builds is something we hope to make possible with this metadata registry.

The way this would work in practice would be to publish the solidity versioning, as well as the bytecode / ABI

in the metadata DAG inside the package manifest. Here, our curation layer would have the responsiblity of

verifying builds and adding methods to the byte code mapping inside of the contract. These signatures will

lean on the existing ERC-1820 implementation to perform a check if a contract conforms to an interface.

However, in addition to this check it will register the contract to a mapping of contracts that all have the

same byte code. This will then expose a method that has a more strict check that will ensure that a given

contract both supports a given interface but also strictly conforms to a set of methods. In other words, when

an address is linked to a code repository with a deterministic ABI, that contract may only have the methods

specified to that implementation. This verified status will be displayed on the curation layer.

3.3 Identity System and Additional Commitments

Implicitly, the current public-key infrastructure is being leveraged in lieu of an identity system. This will allow

the registry the capability of priviliging package maintainers with the ability to update their own manifest

with the same keys they've used to publish a package on other services, i.e. git release, npm, etc. A future

line of work would be to add an identity layer for arbitrary users to make commitments about published

code. Curation could then be leveraged to surface relevant metadata surrounding contracts that a

maintainer may not want to support in the immediate manifest but can be accommodated for at a later date.

Scope of Interest

Publisher trust, reputation, and curation in modular development paradigms

Prior to v4, users, LPs, and developers only had to trust Uniswap Labs and the vertically integrated v2 and

v3 contracts. [6]

Given the frequency of hacks in DeFi, one cannot rely solely on the presence of an audit. A common

consideration is the reputation of the entity that is publishing the code. Uniswap Labs, as a leader in the

space spanning several years, has developed a strong reputation for shipping secure code. This strong

reputation, in combination with industry leading development practices and extensive audits from highly

reputable firms, has historically provided enough trust for users to confidently interact with the markets on

Uniswap. They simply needed to trust one entity: Uniswap Labs. Now, with the introduction of hooks, users,

DRAFT

LPs, and developers have to trust the Uniswap v4 singleton, the Uniswap v4 smart contracts, and the hooks

that are used by the pools. This is a significant increase in the number of entities that users, LPs, and

developers have to trust.

Front-end security

On the front-end, the simplicity of previous iterations of Uniswap allowed for a simple user experience. In a

vertically integrated system, the surface area for third party integrations is small and simple. This led to

simple integrations at the edge, simple SDKs, and simple open-source front-ends. These third parties were

therefore inclined to use those existing SDKs, and many opted to forgo their own front-end entirely and

instead use the open-source front-end. This led to a simple user experience, and a simple security model.

With v4, the front-end has to be able to handle the complexity of the different hooks that are used by the

pools. This introduces new security concerns.

Intents

In future work, a contract regime can be developed for the GTR system to provide stronger guarantees and a

higher degree of trust and composability for the emerging Intents architecture used by protocols like

Cowswap, UniswapX, Anoma, and others.

Relevant standards and documentation:

https://eips.ethereum.org/EIPS/eip-7521

https://ethresear.ch/t/a-decentralised-solver-architecture-for-executing-intents-on-evm-

blockchain/16608

https://medium.com/@okcontract/introducing-low-level-intents-a-summary-of-our-talk-at-ethcc-6-

5f8246c80639

https://blog.essential.builders/introducing-erc-7521-generalized-intents/

Conclusion
Overall, with these sets of metadata standards and contracts, Archetype sets out to harden the software

supply chain. It achieves this by giving developers the tools to specify metadata about packages they

release, as well as surface contracts that may exist on-chain that implement a specific set of interfaces. This

can then be used as a preliminary check in contracts that wish to references addresses on-chain to ensure

they have a correct implementation. As the registry matures, statements can be made about the veracity of

a claim dealing with functionality. This could lead to sophisticated commitment schemes across projects

that ensure that when new versions are released, shared test suites still pass. There is now a trail of

artifacts, for auditors, that can quickly be surfaced for many parts of the dependency chain. The previous

section discussing the scope of interest elaborates on real world use cases where the registry minimizes

trust between actors, while still letting developers create novel protocols.

The ultimate goal is to forward the registry through the same scrutiny of the EIP process while other teams

leverage the contracts to create a more secure ecosystem. Semantic schemas and commitment regimes are

to come with additional examples. By allowing flexibility on this front we hope to see a wide ranging set of

tagging and semantic constructions. This initial version has a particular focus on message signing to

onboard existing public-keys.

References

[1] https://eips.ethereum.org/EIPS/eip-1820 [2] https://docs.ethpm.com [3] https://cose-wg.github.io/cose-

spec/ [4] https://datatracker.ietf.org/group/scitt/about/ [5] https://datatracker.ietf.org/doc/draft-ietf-scitt-

https://eips.ethereum.org/EIPS/eip-7521
https://ethresear.ch/t/a-decentralised-solver-architecture-for-executing-intents-on-evm-blockchain/16608
https://ethresear.ch/t/a-decentralised-solver-architecture-for-executing-intents-on-evm-blockchain/16608
https://medium.com/@okcontract/introducing-low-level-intents-a-summary-of-our-talk-at-ethcc-6-5f8246c80639
https://medium.com/@okcontract/introducing-low-level-intents-a-summary-of-our-talk-at-ethcc-6-5f8246c80639
https://blog.essential.builders/introducing-erc-7521-generalized-intents/
https://eips.ethereum.org/EIPS/eip-1820
https://docs.ethpm.com/
https://cose-wg.github.io/cose-spec/
https://cose-wg.github.io/cose-spec/
https://datatracker.ietf.org/group/scitt/about/
https://datatracker.ietf.org/doc/draft-ietf-scitt-architecture
DRAFT

architecture [6] https://github.com/Uniswap/v4-core/blob/main/whitepaper-v4-draft.pdf

https://datatracker.ietf.org/doc/draft-ietf-scitt-architecture
https://github.com/Uniswap/v4-core/blob/main/whitepaper-v4-draft.pdf
DRAFT

