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Abstract

I aim to develop ML systems that separate training processes, specifically model
and data pre-processing, from the underlying computational resources. There
is a focus on performance because training large models is resource-intensive
and training times are long. Optimizing performance leads to ML systems being
highly intertwined with the resources, such as model-specific distributions to
resources. Flexibility for adaptations is missing, e.g. to move the training to
different resources.
The goal is to decouple ML frameworks from hardware to enable device-
independent computations. By introducing new abstractions in the ML stack
between the expression of training and the execution on hardware. Clear bound-
aries enable new features and easier optimizations of components. E.g. systems
can scale the number of resources during training and improve cluster utilization.
This approach enhances the efficiency of ML training, reducing both time and
environmental impact. Additionally, ML systems can scale the model size up more
easily to better performance on tasks.

Machine learning (ML) has remarkable achievements in, e.g., computer vision, recommender systems,
and conversational artificial intelligence. People can search for objects in photos due to object
recognition, generate images from text with generative AI, and send voice commands to their devices.
On the ML theory side, it is due to milestones such as stochastic gradient descent (SGD), the
ResNet or Transformer models, and the Adam optimizer. On the ML systems side, it was enabled
by huge increases in computational power and DL frameworks, such as Tensorflow or PyTorch.
The frameworks allow the ML scientists and engineers to express the training and allocate the
computations to the resources.

Focus on performance. To be able to scale up ML training for huge datasets and large models a
focus on performance is required because otherwise, the training times are too long to see models
converge. Therefore, ML frameworks became highly intertwined with the hardware to optimize
the execution of the computations. While the performance benefits are great for training times, the
execution of the training is very rigid. The current practice is to write device-specific code describing
the ML training, as shown in Fig. 1. The data pre-processing and model definition are expressed for
each device. It includes the communication between devices, i.e. which devices communicate with
which other devices and how. Additionally, the descriptions need to define which data samples and
model parameters are required.

It entails multiple issues (1) The distribution of computations to multiple accelerators are model-
specific to get the last bit of performance out of the hardware. The decision of how to distribute the
computations for ML training is made on the same level of abstraction as the definition of the ML
model and training. (2) Even though ML training can be very long-running, ML frameworks don’t
account for resource changes. More resources can become available but cannot be incorporated and
taken advantage of. (3) Optimizing the execution for certain resources, can be a problem to reproduce
the results of a training with different resources. It needs to be evaluated if the hyper-parameters used
work with the different resources. For instance, there can be the issue of not being able to use the
same batch size because of less memory being available.
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Figure 1: Current ML stack
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Figure 2: Proposed ML stack

Disentangle ML Frameworks From Resources. While performance is key for ML training, there
should not be such a device-specific definition of the training. As shown in Fig. 2, I propose to
disentangle the ML framework from the resources by introducing new abstractions through new
layers in the ML stack. An ML engineer should design model training without needing to tailor it to
specific computational resources. The definition of data pre-processing and model is translated into a
united computational dataflow graph. A dataflow graph that is device-independent, meaning only
expressing the mathematical computations. Using the computational dataflow graph, the resources
are considered and a distributed dataflow graph is created. It allows the optimization of dataflow
graph mapping to the ML accelerators. With clear abstraction layers, everyone can focus on their
expertise, e.g. improving the model structure or optimizing the distribution of computations.

Given the high cost of accelerators, organizations must keep the utilization of accelerators high,
while ensuring ML jobs to achieve their training goals in terms of e.g. model accuracy and training
throughput. Users submit ML jobs to ML schedulers, which allocate them to resources. An
emerging requirement for ML schedulers is that they must change the accelerator allocation of
long-running ML jobs dynamically at runtime. This has several reasons: (1) elasticity—to maintain
high cluster utilization, ML jobs must claim extra accelerators resources when they become available,
(2) redeployment—ML jobs may have to release GPU resources and move to other resources to
reduce fragmentation, support hardware maintenance, or handle preemption by higher priority jobs,
and (3) failure recovery—ML jobs may lose accelerators at runtime due to failure and must continue
training with a subset of resources after recovering from checkpoints.

Parameters are adapted dynamically during training. For example, many models only reach high
accuracy if the learning rate is decreased as the model converges, the batch size can be set dynamically
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based on real-time gradient metrics, and the communication strategy between workers can be adapted
to the current training loss. Similarly, system parameters can be updated to react to changes in
exploitable levels of parallelism and resource availability. For example, the number of workers can be
changed according to the observed resource utilization, thus improving the utilization of expensive
accelerators. KungFu [1] is a distributed ML training library that is designed to adapt configuration
parameters at runtime. The key idea is to support Adaptation Policies written by users, which change
hyper- and system parameters during training based on real-time monitored metrics.

Many large-scale DL jobs are run in the cloud. With long training times, there is an economic
incentive for distributed training on transient virtual machines (VM), which can yield cost reductions.
It should be possible for distributed DL jobs to run exclusively on transient VMs. Systems face
challenges such as workers may be added and removed from the training when transient VMs become
available and are revoked, and as a cluster changes configuration parameters of the DL job are
affected. Therefore, it is hard to deploy distributed DL jobs currently. Spotnik [2] is a distributed
ML system for transient VMs that explores adaptive collective communication by using a novel
communication layer that handles dynamic changes to the membership in the cluster.

The design of current DL frameworks, such as PyTorch, TensorFlow, or JAX are ill-suited to allow
DL schedulers to change GPU resources at runtime. DL jobs executed by current frameworks lack a
property that we term device-independence: DL jobs are tightly coupled to accelerators at deployment
time, preventing DL schedulers from changing the allocation at runtime. Additionally, changing the
number of accelerators of a DL job with multi-dimensional parallelism can affect model convergence.
The idea is to create a new state management library that externalizes the training state, i.e. the model
and data pre-processing state, from a DL job in the DL framework and then transforms the state
at runtime in response to resource changes. Thereby, Tenplex (unpublished) enables DL jobs with
multi-dimensional parallelism to support changes to accelerator resources during training.

Future trajectory. Having made good progress in exploring the concept of disentangling ML
frameworks and resources, there are still features possible that can be achieved by disentangling. One
of the features is failure recovery. Long-running machine learning jobs face the issue of losing a lot
of training progress in case of failure which failure recovery can mitigate. A failure of an accelerator
implies a resource change with the addition of a potential loss of training state. The idea is to use
the capability of dynamically changing the resources during runtime and a replication of the training
state. I will investigate whether to maintain state in persistent storage or through replication among
workers. Additionally, I will evaluate and compare different approaches to see which approaches
have the least overhead what the overhead depends on, and what the bottlenecks are.

Another interesting directory is to explore ML training in which the model learns its structure. During
the training, connections between artificial neurons are added and removed. It has implications for
the ML system when the computations and therefore the computations dataflow graph changes. The
question is how can a ML system support the computation changes with a minimum degradation of
performance. Does the proposed disentangled ML stack work or must it be extended to properly
support it? I want to find out if the computational graph should become more fine-grained and
incorporate the learning of connections between neurons. Additionally, the exploration includes
comparing it to enabling and disabling parameters and whether a combination of both has the best
performance. Sparse ML models are of research interest and there might be techniques used for
sparse models which can be applied to structure-changing ML models. Better support for model
structure changes would help ML scientists better explore the space.
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